Block Sequences with Projections into a Sequence of Happy Families

Heike Mildenberger

Winter School in Abstract Analysis 2018 section Set Theory and Topology Jan. 27 – Feb. 3, 2018

The k-valued blocks Fin_k

Definition

Let $k \in \omega \setminus \{0\}$ unless stated otherwise.

(1) For $p: \omega \to k+1$ we let $\operatorname{supp}(p) = \{n \in \omega : p(n) \neq 0\}.$

 $\mathbf{Fin}_{k} = \{p \colon \omega \to k+1 \ : \ \mathrm{supp}(p) \ \mathrm{finite} \ \land k \in \mathrm{range}(p)\}.$

The k-valued blocks Fin_k

Definition

Let $k \in \omega \setminus \{0\}$ unless stated otherwise.

(1) For
$$p: \omega \to k+1$$
 we let $\operatorname{supp}(p) = \{n \in \omega : p(n) \neq 0\}.$

 $\operatorname{Fin}_k = \{p \colon \omega \to k+1 \ : \ \operatorname{supp}(p) \ \text{finite} \ \land k \in \operatorname{range}(p)\}.$

(2)
$$\operatorname{Fin}_{[1,k]} = \bigcup_{j=1}^k \operatorname{Fin}_j$$
.

The k-valued blocks Fin_k

Definition

Let $k \in \omega \setminus \{0\}$ unless stated otherwise.

(1) For $p: \omega \to k+1$ we let $\operatorname{supp}(p) = \{n \in \omega : p(n) \neq 0\}.$

 $\operatorname{Fin}_k = \{p \colon \omega \to k+1 \ \colon \operatorname{supp}(p) \text{ finite } \land k \in \operatorname{range}(p)\}.$

(2)
$$\operatorname{Fin}_{[1,k]} = \bigcup_{j=1}^k \operatorname{Fin}_j$$
.

(3) For a, b ∈ Fin_k, we let a < b denote supp(a) < supp(b), i.e., (∀m ∈ supp(a))(∀n ∈ supp(b))(m < n). A finite or infinite sequence ⟨a_i : i < m ≤ ω⟩ of elements of Fin_k is in block-position if for any i < j < m, a_i < a_j. The set (Fin_k)^ω is the set of ω-sequences in block-position, also called block sequences. For n ≥ 1, the set [Fin_k]ⁿ is the set of n-sequences in block-position over Fin_k.

(4) For k ≥ 1, a, b ∈ Fin_k, we define the partial semigroup operation + as follows: If supp(a) < supp(b), then a + b ∈ Fin_k is defined. We let (a + b)(n) = a(n) + b(n). Otherwise a + b is undefined. Thus a+b = a ↾ supp(a)∪b ↾ supp(b)∪0 ↾ (ω\(supp(a)∪supp(b))).

- (4) For k ≥ 1, a, b ∈ Fin_k, we define the partial semigroup operation + as follows: If supp(a) < supp(b), then a + b ∈ Fin_k is defined. We let (a + b)(n) = a(n) + b(n). Otherwise a + b is undefined. Thus a+b = a ↾ supp(a)∪b ↾ supp(b)∪0 ↾ (ω\(supp(a)∪supp(b))).
 (5) For any k ≥ 2 we define on Fin_k the Tetris operation:
 - $T: \operatorname{Fin}_k \to \operatorname{Fin}_{k-1}$ by $T(p)(n) = \max\{p(n) 1, 0\}.$

(6) Let $B \subseteq \operatorname{Fin}_k$ be min-unbounded. We let

$$\begin{aligned} \operatorname{TFU}_{k}(B) = & \{T^{(j_{0})}(b_{n_{0}}) + \dots + T^{(j_{\ell})}(b_{n_{\ell}}) : \\ & \ell \in \omega \setminus \{0\}, b_{n_{i}} \in B, b_{n_{0}} < \dots < b_{n_{\ell}}, \\ & j_{i} \in k, \exists r \leq \ell j_{r} = 0 \} \end{aligned}$$

be the partial subsemigroup of Fin_k generated by B. We call B a TFU_k -set if $B = TFU_k(B)$.

(7) We define the condensation order: $\bar{a} \sqsubseteq_k \bar{b}$ if $\bar{a} \in TFU_k(\bar{b})^{\omega}$.

(7) We define the condensation order: ā ⊑_k b̄ if ā ∈ TFU_k(b̄)^ω.
(8) We define the past-operation: Let ā ∈ (Fin_k)^ω and p ∈ Fin_k.

$$(\bar{a} \operatorname{past} p) = \langle a_i \, : \, i \geq i_0
angle$$

with $i_0 = \min\{i : \operatorname{supp}(a_i) > p\}.$

Lemma

If there is $\bar{c} \sqsubseteq_k \bar{a}, \bar{b}$, then there is a largest one and it can be computed by finite initial segments.

Proof.

We define a well-order (of type ω) $\leq_{\text{lex},\text{Fin}_k}$ on the set Fin_k via $a <_{\text{lex},\text{Fin}_k} b$ if $\max(\text{supp}(a)) < \max(\text{supp}(b))$ or $(\max(\text{supp}(a)) = \max(\text{supp}(b))$ and there is an m such that $a \upharpoonright m = b \upharpoonright m$ and a(m) > b(m). For a non-empty set $X \subseteq \text{Fin}_k$ we let $\min_{\text{Fin}_k}(X)$ be the $\leq_{\text{lex},\text{Fin}_k}$ -least element of X. We let

$$c_0 = \min_{\text{lex}, \text{Fin}_k} (\text{TFU}_k(\bar{a}) \cap \text{TFU}_k(\bar{b})),$$

 $c_{n+1} = \min_{\text{lex}, \text{Fin}_k} (\text{TFU}_k(\bar{a} \text{ past } c_n) \cap \text{TFU}_k(\bar{b} \text{ past } c_n))$

We fix parameters as follows. Let $k \ge 1$. Fix $P_{\min}, P_{\max} \subseteq \{1, \dots, k\}$. Let $PP = \{(i, x) : x \in \{\min, \max\}, i \in P_x\}$ and let

$$\bar{\mathcal{R}} = \{(\iota, \mathcal{R}_{\iota}) : \iota \in PP\}$$

be a PP-sequence of pairwise nnc Ramsey ultrafilters (pairwise nnc selective coideals, i.e. happy families, would suffice for the pure decision property and properness). We also name the end segments for $1 \le j \le k$:

$$\bar{\mathcal{R}} \upharpoonright \{j, \dots, k\} = \{(\iota, \mathcal{R}_{\iota}) : \iota = (i, x) \in PP \land i \in \{j, \dots, k\}\}.$$

We let $(\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ denote the set of Fin_k -blocksequences \overline{a} with the following properties:

$$(\forall i \in P_{\min})\{\min(a_n^{-1}[\{i\}]) : n \in \omega\} \in \mathcal{R}_{i,\min} \land (\forall i \in P_{\max})\{\max(a_n^{-1}[\{i\}]) : n \in \omega\} \in \mathcal{R}_{i,\max} \land (\forall s \in \mathrm{TFU}_k(\bar{a}))(\min(s^{-1}[\{1\}]) < \min(s^{-1}[\{2\}]) < \dots < \min(s^{-1}[\{k\}]) \\ \max(s^{-1}[\{k\}]) < \max(s^{-1}[\{k-1\}]) < \dots < \max(s^{-1}[\{1\}])).$$

$$(0.1)$$

If $(i, x) \in \{1, \dots, k\} \times \{\min, \max\} \setminus PP$, we leave the term $x(s^{-1}[\{i\}])$ out of the equation (0.1).

Lemma

There are \sqsubseteq_k^* -incompatible elements in $(\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$. Indeed, there are $\overline{a}, \overline{b} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ such that for any $j = 0, \ldots, k - 1$ the Fin_{k-j} -block-sequences $T^{(j)}[\overline{a}]$ and $T^{(j)}[\overline{b}]$ are \sqsubseteq_{k-j}^* -incompatible.

A common strengthening of a theorem by Gowers and a theorem by Blass

The special case of $PP = \{(1, \min), (1, \max)\}$ was proved by Blass in 1987, the case $PP = \emptyset$ and arbitrary finite k by Gowers in 1992.

Theorem

Let k, PP, $\overline{\mathcal{R}}$ be as above. Let $\overline{a} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ and let c be a colouring of $\operatorname{TFU}_k(\overline{a})$ into finitely many colours. Then there is a $\overline{b} \sqsubseteq_k \overline{a}, \overline{b} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ such that $\operatorname{TFU}_k(\overline{b})$ is c-monochromatic.

Given $k,~P_{\min},~P_{\max}$ and $ar{\mathcal{R}}$ as above, we define

$$\begin{split} \gamma(\operatorname{Fin}_k(\bar{\mathcal{R}})) &= \{ \mathcal{U} : \mathcal{U} \text{ is a min-unbounded ultrafilter over } \operatorname{Fin}_k \\ (\forall i \in P_{\min})(\hat{\min}_i(\mathcal{U}) = \mathcal{R}_{i,\min}) \land \\ (\forall i \in P_{\max})(\hat{\min}_i(\mathcal{U}) = \mathcal{R}_{i,\max}) \}, \end{split}$$

endowed with the topology given by the basic open sets

$$\left\{ \{ \mathcal{U} \in \gamma(\operatorname{Fin}_k(\bar{\mathcal{R}})) : A \in \mathcal{U} \} : A \subset \operatorname{Fin}_k, \\ \{ x(s^{-1}[\{i\}]) : s \in A \} \in \mathcal{R}_{i,x} \right\}.$$

The space $\gamma(\operatorname{Fin}_k(\bar{\mathcal{R}}))$ a compact Hausdorff space.

For work with semigroups of ultrafilters we temporarily have to choose PP in a narrower sense. The reason is the claim part of Def. and Lemma below. We do not know how to handle missing i in the sequence of $\mathcal{R}_{i,\min}$'s or in the sequence of $\mathcal{R}_{i,\max}$'s in the claim.

Definition

For any $k \ge 1$, a reservoir of indices PP of the strict form is one of the following three types: $PP = \{(i, \min), (i, \max) : 1 \le i \le k\},\ PP = \{(i, \min) : 1 \le i \le k\},\ PP = \{(i, \min) : 1 \le i \le k\}.$

Definition and Lemma

Again we work with strict PP. For $2 \leq j \leq k$, we write $T[X] = \{T(a) : a \in X\}$ for $X \subseteq \operatorname{Fin}_j(\bar{\mathcal{R}} \upharpoonright \{k - j + 1, k\})$ and $T[\bar{a}] = \langle T(a_n) : n \in \omega \rangle$ for $\bar{a} \in (\operatorname{Fin}_j)^{\omega}(\bar{\mathcal{R}} \upharpoonright \{k - j + 1, k\})$. The lift of the tetris operation

$$\dot{T}: \gamma(\operatorname{Fin}_{j}(\bar{\mathcal{R}} \upharpoonright \{k-j+1,\ldots,k\})) \to \gamma(\operatorname{Fin}_{j-1}(\bar{\mathcal{R}} \upharpoonright \{k-j+2,\ldots,k\}))$$

is defined via

$$\dot{T}(\mathcal{U}) = \{T[X] : X \in \mathcal{U}\}.$$

Definition and Lemma

Let k, PP and $\overline{\mathcal{R}}$ be as above, with strict PP. We define $\stackrel{\cdot}{+}$ on $(\bigcup_{j=1}^{k} \gamma(\operatorname{Fin}_{j})(\overline{\mathcal{R}} \upharpoonright \{k-j+1,\ldots,k\}))^{2}$ as follows.

$$\dot{+} : \gamma(\operatorname{Fin}_{i}(\bar{\mathcal{R}} \upharpoonright \{k-i+1,\ldots,k\})) \times \gamma(\operatorname{Fin}_{j}(\bar{\mathcal{R}} \upharpoonright \{k-j+1,\ldots,k\})) \to \gamma \operatorname{Fin}_{\max\{i,j\}}(\bar{\mathcal{R}} \upharpoonright \{k-\max(i,j)+1,\ldots,k\})$$

is defined as

$$\mathcal{U} \dot{+} \mathscr{V} = \left\{ X \subseteq \operatorname{Fin}_{\max\{i,j\}} (\bar{\mathcal{R}} \upharpoonright \{k - \max(i,j) + 1, \dots, k\}) \\ : \left\{ s : \{t : s + t \in X\} \in \mathscr{V} \right\} \in \mathcal{U} \right\}.$$

Lemma

let k, PP, $\overline{\mathcal{R}}$ be as above, not necessarily strict. Here the strict form of PP is not needed. Any \sqsubseteq_k -descending sequence $\langle \overline{c}_n : n \in \omega \rangle$ in $(\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ has a diagonal lower bound $\overline{b} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$

 $(\forall n \in \omega)((\bar{b} \operatorname{past} b_n) \sqsubseteq_k \bar{c}_{\max(\operatorname{supp}(b_n))+1}).$

such that each b_{n+1} is an element of $\{c_{\ell_{n+1},m} : m \in \omega\}$ for some $\ell_{n+1} > \max(\operatorname{supp}(b_n))$ and b_0 is an element of $\{c_{\ell_0,m} : m \in \omega\}$ for some ℓ_0 .

Lemma

(Lemma 2.24, Todorcevic, Ramsey Spaces) Let k, PP, $\overline{\mathcal{R}}$ be as above, with full PP. For any $k \ge j \ge 1$, and $\overline{a} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ there is an idempotent $\mathcal{U}_j \in \gamma(\operatorname{Fin}_j(\overline{\mathcal{R}} \upharpoonright \{k+j-1,\ldots,k\}))$ such that for all $1 \le i \le j \le k$ (1) $\mathcal{U}_j \dotplus \mathcal{U}_i = \mathcal{U}_j$, (2) $\dot{T}^{(j-i)}(\mathcal{U}_i) = \mathcal{U}_i$.

(3)
$$T^{(i-1)}(\bar{a}) \in \mathcal{U}_{k-i+1}.$$

We let k, PP, $\overline{\mathcal{R}}$ be as above, not necessarily strict. In the Gowers-Matet forcing with $\overline{\mathcal{R}}$, $\mathbb{M}_k(\overline{\mathcal{R}})$, the conditions are pairs (s, \overline{c}) such that $s \in \operatorname{Fin}_k$ and $\overline{c} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ and $\operatorname{supp}(s) < \operatorname{supp}(c_0)$. The forcing order is: $(t, \overline{b}) \leq (s, \overline{a})$ if t = s + s' and $s' \in \operatorname{TEU}_s(s)$.

The forcing order is: $(t, \bar{b}) \leq (s, \bar{a})$ if t = s + s' and $s' \in TFU_k(\bar{a})$ and $\bar{b} \sqsubseteq_k (\bar{a} \text{ past } s')$

Definition

For $(s, \bar{a}), (t, \bar{b}) \in \mathbb{M}_k(\bar{\mathcal{R}})$ and $n \in \omega$ we let $(s, \bar{a}) \leq_n (t, \bar{b})$ if s = tand $a_i = b_i$ for i < n.

Lemma

 $\mathbb{M}_k(\bar{\mathcal{R}}) \text{ has the pure decision property, i.e., for any } \varphi \in \mathcal{L}(\in), \\ (s,\bar{a}) \in \mathbb{M}_k(\bar{\mathcal{R}}) \exists (s,\bar{b}) \leq (s,\bar{a}) \ ((s,\bar{b}) \Vdash \varphi \lor (s,\bar{b}) \Vdash \neg \varphi).$

Since the space $(Fin_k)^{\omega}(\bar{\mathcal{R}})$ is stable, we can step up the Milliken–Taylor style to higher finite arities:

Theorem

Let $n \in \omega \setminus \{0\}$ and $\bar{a} \in (\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$ and let c be a colouring of $[\operatorname{TFU}_k(\bar{a})]^n_{<}$ into finitely many colours. Then there is a $\bar{b} \sqsubseteq_k \bar{a}$, $\bar{b} \in (\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$ such that $[\operatorname{TFU}_k(\bar{b})]^n_{<}$ is c-monochromatic.