Block Sequences with Projections into a Sequence of Happy Families

Heike Mildenberger

Winter School in Abstract Analysis 2018
section Set Theory and Topology
Jan. 27 - Feb. 3, 2018

The k-valued blocks Fin_{k}

Definition

Let $k \in \omega \backslash\{0\}$ unless stated otherwise.
(1) For $p: \omega \rightarrow k+1$ we let $\operatorname{supp}(p)=\{n \in \omega: p(n) \neq 0\}$.
$\operatorname{Fin}_{k}=\{p: \omega \rightarrow k+1: \operatorname{supp}(p)$ finite $\wedge k \in \operatorname{range}(p)\}$.

The k-valued blocks Fin_{k}

Definition

Let $k \in \omega \backslash\{0\}$ unless stated otherwise.
(1) For $p: \omega \rightarrow k+1$ we let $\operatorname{supp}(p)=\{n \in \omega: p(n) \neq 0\}$.

$$
\operatorname{Fin}_{k}=\{p: \omega \rightarrow k+1: \operatorname{supp}(p) \text { finite } \wedge k \in \operatorname{range}(p)\} .
$$

(2) $\operatorname{Fin}_{[1, k]}=\bigcup_{j=1}^{k} \operatorname{Fin}_{j}$.

The k-valued blocks Fin_{k}

Definition

Let $k \in \omega \backslash\{0\}$ unless stated otherwise.
(1) For $p: \omega \rightarrow k+1$ we let $\operatorname{supp}(p)=\{n \in \omega: p(n) \neq 0\}$.

$$
\operatorname{Fin}_{k}=\{p: \omega \rightarrow k+1: \operatorname{supp}(p) \text { finite } \wedge k \in \operatorname{range}(p)\} .
$$

(2) $\operatorname{Fin}_{[1, k]}=\bigcup_{j=1}^{k} \operatorname{Fin}_{j}$.
(3) For $a, b \in \operatorname{Fin}_{k}$, we let $a<b$ denote $\operatorname{supp}(a)<\operatorname{supp}(b)$, i.e., $(\forall m \in \operatorname{supp}(a))(\forall n \in \operatorname{supp}(b))(m<n)$. A finite or infinite sequence $\left\langle a_{i}: i<m \leq \omega\right\rangle$ of elements of Fin_{k} is in block-position if for any $i<j<m, a_{i}<a_{j}$. The set $\left(\operatorname{Fin}_{k}\right)^{\omega}$ is the set of ω-sequences in block-position, also called block sequences. For $n \geq 1$, the set $\left[\operatorname{Fin}_{k}\right]_{<}^{n}$ is the set of n-sequences in block-position over Fin_{k}.

Two operations on Fin_{j}

Definition

(4) For $k \geq 1, a, b \in \operatorname{Fin}_{k}$, we define the partial semigroup operation + as follows: If $\operatorname{supp}(a)<\operatorname{supp}(b)$, then $a+b \in \operatorname{Fin}_{k}$ is defined. We let $(a+b)(n)=a(n)+b(n)$. Otherwise $a+b$ is undefined. Thus

$$
a+b=a \upharpoonright \operatorname{supp}(a) \cup b \upharpoonright \operatorname{supp}(b) \cup 0 \upharpoonright(\omega \backslash(\operatorname{supp}(a) \cup \operatorname{supp}(b))) .
$$

Two operations on Fin_{j}

Definition

(4) For $k \geq 1, a, b \in \operatorname{Fin}_{k}$, we define the partial semigroup operation + as follows: If $\operatorname{supp}(a)<\operatorname{supp}(b)$, then $a+b \in \operatorname{Fin}_{k}$ is defined. We let $(a+b)(n)=a(n)+b(n)$. Otherwise $a+b$ is undefined. Thus

$$
a+b=a \upharpoonright \operatorname{supp}(a) \cup b \upharpoonright \operatorname{supp}(b) \cup 0 \upharpoonright(\omega \backslash(\operatorname{supp}(a) \cup \operatorname{supp}(b))) .
$$

(5) For any $k \geq 2$ we define on Fin_{k} the Tetris operation: $T: \operatorname{Fin}_{k} \rightarrow \operatorname{Fin}_{k-1}$ by $T(p)(n)=\max \{p(n)-1,0\}$.

Generated semigroups

Definition

(6) Let $B \subseteq \operatorname{Fin}_{k}$ be min-unbounded. We let

$$
\begin{aligned}
\operatorname{TFU}_{k}(B)= & \left\{T^{\left(j_{0}\right)}\left(b_{n_{0}}\right)+\cdots+T^{\left(j_{\ell}\right)}\left(b_{n_{\ell}}\right):\right. \\
& \ell \in \omega \backslash\{0\}, b_{n_{i}} \in B, b_{n_{0}}<\cdots<b_{n_{\ell}} \\
& \left.j_{i} \in k, \exists r \leq \ell j_{r}=0\right\}
\end{aligned}
$$

be the partial subsemigroup of Fin_{k} generated by B. We call B a TFU_{k}-set if $B=\operatorname{TFU}_{k}(B)$.

The condensation order

Definition

(7) We define the condensation order: $\bar{a} \sqsubseteq_{k} \bar{b}$ if $\bar{a} \in \operatorname{TFU}_{k}(\bar{b})^{\omega}$.

The condensation order

Definition

(7) We define the condensation order: $\bar{a} \sqsubseteq_{k} \bar{b}$ if $\bar{a} \in \operatorname{TFU}_{k}(\bar{b})^{\omega}$.
(8) We define the past-operation: Let $\bar{a} \in\left(\operatorname{Fin}_{k}\right)^{\omega}$ and $p \in \operatorname{Fin}_{k}$.

$$
(\bar{a} \text { past } p)=\left\langle a_{i}: i \geq i_{0}\right\rangle
$$

with $i_{0}=\min \left\{i: \operatorname{supp}\left(a_{i}\right)>p\right\}$.

About the condensation order \sqsubseteq_{k}

Lemma

If there is $\bar{c} \sqsubseteq_{k} \bar{a}, \bar{b}$, then there is a largest one and it can be computed by finite initial segments.

Proof.

We define a well-order (of type ω) $\leq_{\text {lex, } \text { Fin }_{k}}$ on the set Fin_{k} via $a<_{\text {lex, } \text { Fin }_{k}} b$ if $\max (\operatorname{supp}(a))<\max (\operatorname{supp}(b))$ or $(\max (\operatorname{supp}(a))=\max (\operatorname{supp}(b))$ and there is an m such that $a \upharpoonright m=b \upharpoonright m$ and $a(m)>b(m)$. For a non-empty set $X \subseteq \operatorname{Fin}_{k}$ we let $\min _{\mathrm{Fin}_{k}}(X)$ be the $\leq_{\text {lex, } \mathrm{Fin}_{k}}$-least element of X. We let

$$
\begin{aligned}
c_{0} & =\min _{\text {lex, } \mathrm{Fin}_{k}}\left(\operatorname{TFU}_{k}(\bar{a}) \cap \operatorname{TFU}_{k}(\bar{b})\right), \\
c_{n+1} & =\min _{\text {lex, }, \mathrm{Fin}_{k}}\left(\operatorname{TFU}_{k}\left(\bar{a} \text { past } c_{n}\right) \cap \operatorname{TFU}_{k}\left(\bar{b} \text { past } c_{n}\right)\right)
\end{aligned}
$$

A subspace of $\left(\mathrm{Fin}_{k}\right)^{\omega}$-Fixing $P P$

Definition

We fix parameters as follows. Let $k \geq 1$. Fix
$P_{\min }, P_{\max } \subseteq\{1, \ldots, k\}$. Let
$P P=\left\{(i, x): x \in\{\min , \max \}, i \in P_{x}\right\}$ and let

$$
\overline{\mathcal{R}}=\left\{\left(\iota, \mathcal{R}_{\iota}\right): \iota \in P P\right\}
$$

be a $P P$-sequence of pairwise nnc Ramsey ultrafilters (pairwise nnc selective coideals, i.e. happy families, would suffice for the pure decision property and properness). We also name the end segments for $1 \leq j \leq k$:

$$
\overline{\mathcal{R}} \upharpoonright\{j, \ldots, k\}=\left\{\left(\iota, \mathcal{R}_{\iota}\right): \iota=(i, x) \in P P \wedge i \in\{j, \ldots, k\}\right\} .
$$

A subspace of $\left(\mathrm{Fin}_{k}\right)^{\omega}$

Definition

We let $\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ denote the set of Fin_{k}-blocksequences \bar{a} with the following properties:
$\left(\forall i \in P_{\text {min }}\right)\left\{\min \left(a_{n}^{-1}[\{i\}]\right): n \in \omega\right\} \in \mathcal{R}_{i, \min } \wedge$
$\left(\forall i \in P_{\max }\right)\left\{\max \left(a_{n}^{-1}[\{i\}]\right): n \in \omega\right\} \in \mathcal{R}_{i, \max } \wedge$
$\left(\forall s \in \operatorname{TFU}_{k}(\bar{a})\right)\left(\min \left(s^{-1}[\{1\}]\right)<\min \left(s^{-1}[\{2\}]\right)<\cdots<\min \left(s^{-1}[\{k\}]\right)\right.$

$$
\left.\max \left(s^{-1}[\{k\}]\right)<\max \left(s^{-1}[\{k-1\}]\right)<\cdots<\max \left(s^{-1}[\{1\}]\right)\right) .
$$

(0.1)

If $(i, x) \in\{1, \ldots, k\} \times\{\min , \max \} \backslash P P$, we leave the term $x\left(s^{-1}[\{i\}]\right)$ out of the equation (0.1).

We do not localise to a filter

Lemma

There are \sqsubseteq_{k}^{*}-incompatible elements in $\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$. Indeed, there are $\bar{a}, \bar{b} \in\left(\mathrm{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ such that for any $j=0, \ldots, k-1$ the Fin $_{k-j}$-block-sequences $T^{(j)}[\bar{a}]$ and $T^{(j)}[\bar{b}]$ are \sqsubseteq_{k-j}^{*}-incompatible.

A common strengthening of a theorem by Gowers and a

 theorem by BlassThe special case of $P P=\{(1, \min),(1, \max)\}$ was proved by Blass in 1987, the case $P P=\emptyset$ and arbitrary finite k by Gowers in 1992.

Theorem
Let $k, P P, \overline{\mathcal{R}}$ be as above. Let $\bar{a} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ and let c be a colouring of $\operatorname{TFU}_{k}(\bar{a})$ into finitely many colours. Then there is a $\bar{b} \sqsubseteq_{k} \bar{a}, \bar{b} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ such that $\mathrm{TFU}_{k}(\bar{b})$ is c-monochromatic.

Sketch: Proof via Galvin-Glazer technique

Definition

Given $k, P_{\min }, P_{\max }$ and $\overline{\mathcal{R}}$ as above, we define

$$
\begin{aligned}
\gamma\left(\operatorname{Fin}_{k}(\overline{\mathcal{R}})\right)= & \left\{\mathcal{U}: \mathcal{U} \text { is a min-unbounded ultrafilter over } \operatorname{Fin}_{k}\right. \\
& \left(\forall i \in P_{\min }\right)\left(\min _{i}(\mathcal{U})=\mathcal{R}_{i, \min }\right) \wedge \\
& \left.\left(\forall i \in P_{\max }\right)\left(\min _{i}(\mathcal{U})=\mathcal{R}_{i, \max }\right)\right\}
\end{aligned}
$$

endowed with the topology given by the basic open sets

$$
\begin{aligned}
\left\{\left\{\mathcal{U} \in \gamma\left(\operatorname{Fin}_{k}(\overline{\mathcal{R}})\right): A\right.\right. & \in \mathcal{U}\}: A \subset \operatorname{Fin}_{k} \\
& \left.\left\{x\left(s^{-1}[\{i\}]\right): s \in A\right\} \in \mathcal{R}_{i, x}\right\}
\end{aligned}
$$

The space $\gamma\left(\operatorname{Fin}_{k}(\overline{\mathcal{R}})\right)$ a compact Hausdorff space.

Strict $P P^{\prime}$ s

For work with semigroups of ultrafilters we temporarily have to choose $P P$ in a narrower sense. The reason is the claim part of Def. and Lemma below. We do not know how to handle missing i in the sequence of $\mathcal{R}_{i, \text { min }}$'s or in the sequence of $\mathcal{R}_{i, \text { max }}$'s in the claim.

Definition
For any $k \geq 1$, a reservoir of indices $P P$ of the strict form is one of the following three types: $P P=\{(i, \min),(i, \max): 1 \leq i \leq k\}$, $P P=\{(i, \min): 1 \leq i \leq k\}, P P=\{(i, \min): 1 \leq i \leq k\}$.

A lift of the tetris operation

Definition and Lemma
Again we work with strict $P P$. For $2 \leq j \leq k$, we write
$T[X]=\{T(a): a \in X\}$ for $X \subseteq \operatorname{Fin}_{j}(\overline{\mathcal{R}} \upharpoonright\{k-j+1, k\})$ and
$T[\bar{a}]=\left\langle T\left(a_{n}\right): n \in \omega\right\rangle$ for $\bar{a} \in\left(\operatorname{Fin}_{j}\right)^{\omega}(\overline{\mathcal{R}} \upharpoonright\{k-j+1, k\})$.
The lift of the tetris operation
$\dot{T}: \gamma\left(\operatorname{Fin}_{j}(\overline{\mathcal{R}} \upharpoonright\{k-j+1, \ldots, k\})\right) \rightarrow \gamma\left(\operatorname{Fin}_{j-1}(\overline{\mathcal{R}} \upharpoonright\{k-j+2, \ldots, k\})\right)$
is defined via

$$
\dot{T}(\mathcal{U})=\{T[X]: X \in \mathcal{U}\} .
$$

A lift of the partial semigroup operation +

Definition and Lemma

Let $k, P P$ and $\overline{\mathcal{R}}$ be as above, with strict $P P$. We define $\dot{+}$ on $\left(\bigcup_{j=1}^{k} \gamma\left(\operatorname{Fin}_{j}\right)(\overline{\mathcal{R}} \upharpoonright\{k-j+1, \ldots, k\})\right)^{2}$ as follows.
$\dot{+}: \gamma\left(\operatorname{Fin}_{i}(\overline{\mathcal{R}} \upharpoonright\{k-i+1, \ldots, k\})\right) \times \gamma\left(\operatorname{Fin}_{j}(\overline{\mathcal{R}} \upharpoonright\{k-j+1, \ldots, k\})\right)$
$\rightarrow \gamma \operatorname{Fin}_{\max \{i, j\}}(\overline{\mathcal{R}} \upharpoonright\{k-\max (i, j)+1, \ldots, k\})$
is defined as

$$
\begin{aligned}
\mathcal{U} \dot{\mathscr{V}}= & \left\{X \subseteq \operatorname{Fin}_{\max \{i, j\}}(\overline{\mathcal{R}} \upharpoonright\{k-\max (i, j)+1, \ldots, k\})\right. \\
& :\{s:\{t: s+t \in X\} \in \mathscr{V}\} \in \mathcal{U}\} .
\end{aligned}
$$

Diagonal lower bounds

Lemma

let $k, P P, \overline{\mathcal{R}}$ be as above, not necessarily strict. Here the strict form of PP is not needed. Any \sqsubseteq_{k}-descending sequence $\left\langle\bar{c}_{n}: n \in \omega\right\rangle$ in $\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ has a diagonal lower bound $\bar{b} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$

$$
(\forall n \in \omega)\left(\left(\bar{b} \text { past } b_{n}\right) \sqsubseteq_{k} \bar{c}_{\max \left(\operatorname{supp}\left(b_{n}\right)\right)+1}\right) .
$$

such that each b_{n+1} is an element of $\left\{c_{\ell_{n+1}, m}: m \in \omega\right\}$ for some $\ell_{n+1}>\max \left(\operatorname{supp}\left(b_{n}\right)\right)$ and b_{0} is an element of $\left\{c_{\ell_{0}, m}: m \in \omega\right\}$ for some ℓ_{0}.

A k-sequence of very good idempotent ultrafilters

Lemma

(Lemma 2.24, Todorcevic, Ramsey Spaces) Let $k, P P, \overline{\mathcal{R}}$ be as above, with full $P P$. For any $k \geq j \geq 1$, and $\bar{a} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ there is an idempotent $\mathcal{U}_{j} \in \gamma\left(\operatorname{Fin}_{j}(\overline{\mathcal{R}} \upharpoonright\{k+j-1, \ldots, k\})\right)$ such that for all $1 \leq i \leq j \leq k$
(1) $\mathcal{U}_{j} \dot{+} \mathcal{U}_{i}=\mathcal{U}_{j}$,
(2) $\dot{T}^{(j-i)}\left(\mathcal{U}_{j}\right)=\mathcal{U}_{i}$.
(3) $T^{(i-1)}(\bar{a}) \in \mathcal{U}_{k-i+1}$.

A useful notion of forcing

Definition

We let $k, P P, \overline{\mathcal{R}}$ be as above, not necessarily strict. In the Gowers-Matet forcing with $\overline{\mathcal{R}}, \mathbb{M}_{k}(\overline{\mathcal{R}})$, the conditions are pairs (s, \bar{c}) such that $s \in \operatorname{Fin}_{k}$ and $\bar{c} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ and $\operatorname{supp}(s)<\operatorname{supp}\left(c_{0}\right)$.
The forcing order is: $(t, \bar{b}) \leq(s, \bar{a})$ if $t=s+s^{\prime}$ and $s^{\prime} \in \operatorname{TFU}_{k}(\bar{a})$ and $\bar{b} \sqsubseteq_{k}\left(\bar{a}\right.$ past $\left.s^{\prime}\right)$

Definition
For $(s, \bar{a}),(t, \bar{b}) \in \mathbb{M}_{k}(\overline{\mathcal{R}})$ and $n \in \omega$ we let $(s, \bar{a}) \leq_{n}(t, \bar{b})$ if $s=t$ and $a_{i}=b_{i}$ for $i<n$.

Lemma

$\mathbb{M}_{k}(\overline{\mathcal{R}})$ has the pure decision property, i.e., for any $\varphi \in \mathcal{L}(\in)$,
$(s, \bar{a}) \in \mathbb{M}_{k}(\overline{\mathcal{R}}) \exists(s, \bar{b}) \leq(s, \bar{a})((s, \bar{b}) \Vdash \varphi \vee(s, \bar{b}) \Vdash \neg \varphi)$.

Stepping up to finite dimensions

Since the space $\left(\text { Fin }_{k}\right)^{\omega}(\overline{\mathcal{R}})$ is stable, we can step up the Milliken-Taylor style to higher finite arities:

Theorem
Let $n \in \omega \backslash\{0\}$ and $\bar{a} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ and let c be a colouring of $\left[\operatorname{TFU}_{k}(\bar{a})\right]^{n}$ into finitely many colours. Then there is a $\bar{b} \sqsubseteq_{k} \bar{a}$, $\bar{b} \in\left(\operatorname{Fin}_{k}\right)^{\omega}(\overline{\mathcal{R}})$ such that $\left[\mathrm{TFU}_{k}(\bar{b})\right]_{<}^{n}$ is c-monochromatic.

