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The k-valued blocks Finy,

Definition
Let £ € w\ {0} unless stated otherwise.

(1) For p: w — k+ 1 we let supp(p) ={n € w : p(n) # 0}.

Fing = {p: w — k+ 1 : supp(p) finite Ak € range(p)}.
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The k-valued blocks Finy,

Definition
Let £ € w\ {0} unless stated otherwise.

(1) For p: w — k + 1 we let supp(p) = {n € w : p(n) # 0}.

Fing = {p: w — k+ 1 : supp(p) finite Ak € range(p)}.

(2) Fin[l,k] — U?:l Finj.
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The k-valued blocks Finy,

Definition
Let £ € w\ {0} unless stated otherwise.

(1) For p: w — k + 1 we let supp(p) = {n € w : p(n) # 0}.

Fing = {p: w — k+ 1 : supp(p) finite Ak € range(p)}.

(2) Finpy = Ur_, Fin;.

(3) For a,b € Fing, we let a < b denote supp(a) < supp(b), i.e.,
(Vm € supp(a))(Vn € supp(b))(m < n). A finite or infinite
sequence (a; : i < m < w) of elements of Finy is in
block-position if for any i < j <m, a; < a;. The set (Fing)“
is the set of w-sequences in block-position, also called block
sequences. For n > 1, the set [Fing|Z is the set of

n-sequences in block-position over Fing. 2/18



Two operations on Fin;

Definition

(4) For k > 1, a,b € Fing, we define the partial semigroup
operation + as follows: If supp(a) < supp(b), then
a+ b € Finy is defined. We let (a + b)(n) = a(n) + b(n).
Otherwise a + b is undefined. Thus
a+b = a [ supp(a)Ub | supp(b)U0 | (w\(supp(a)Usupp(b))).
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Two operations on Fin;

Definition

(4) For k > 1, a,b € Fing, we define the partial semigroup
operation + as follows: If supp(a) < supp(b), then
a+ b € Finy is defined. We let (a + b)(n) = a(n) + b(n).
Otherwise a + b is undefined. Thus
a+b = a [ supp(a)Ub | supp(b)U0 | (w\(supp(a)Usupp(b))).

(5) For any k > 2 we define on Finy the Tetris operation:
T: Fing — Fing_1 by T'(p)(n) = max{p(n) — 1, 0}.
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Generated semigroups

Definition
(6) Let B C Fing be min-unbounded. We let
TFUL(B) ={TY) (b,,) + - - - + TV (by,,) :
tew\{0},by, € B, by, < -+ < by,
Ji € k,3r < 5, =0}

be the partial subsemigroup of Finy generated by B. We call
B a TFU,-set if B = TFU(B).
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The condensation order

Definition

(7) We define the condensation order: @ Cy, b if @ € TFU(b)~.
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The condensation order

Definition
(7) We define the condensation order: a C;. b if @ € TFU(b)~.

(8) We define the past-operation: Let @ € (Fing)“ and p € Fin.
(apastp) = (a; : 1 > o)

with ¢9 = min{i : supp(a;) > p}.
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About the condensation order Cj

Lemma
If there is @ C}, @, b, then there is a largest one and it can be

computed by finite initial segments.

Proof.

We define a well-order (of type w) <jex Fin, On the set Finy via
a <lex,Finy b if max(supp(a)) < max(supp(b)) or
(max(supp(a)) = max(supp(b)) and there is an m such that
alm=">0[mand a(m) > b(m). For a non-empty set X C Finy
we let mingip, (X) be the <jex Fin,-least element of X. We let

co = lmFi‘n (TFUk(@) ﬂTFUk(b)),
ex,Fing
Cntl = lembin (TFUy(a past ¢,) N TFU(bpast cy,))
x,Fing
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A subspace of (Finy)“~Fixing PP

Definition

We fix parameters as follows. Let & > 1. Fix
Prin, Pmax C {1,...,k}. Let

PP ={(i,z) : z € {min,max},i € P,} and let

R={(R,) : € PP}

be a PP-sequence of pairwise nnc Ramsey ultrafilters (pairwise nnc
selective coideals, i.e. happy families, would suffice for the pure
decision property and properness). We also name the end segments
for1 <j<k:

RI{j.. k}={(,R) : v=(i,z) e PPNi € {j,...,k}}.
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A subspace of (Fing)“

Definition

We let (Fing)“(R) denote the set of Fing-blocksequences a with
the following properties:

(Vi € Pin){min(a,'[{i}]) : n € w} € Rimin A
(Vi € Prax){max(a, '[{i}]) : n € w} € Rimax A
(Vs € TFU(a@)) (min(s~'[{1}]) < min(s™'[{2}]) < -+ < min(s~'[{k}])
max (s~ [{k}]) < max(s '[{k—1}]) <--- < max(s_l[{l}])).
(0.1)

If (¢,x2) € {1,...,k} x {min, max} \ PP, we leave the term
x(s71[{i}]) out of the equation (0.1).
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We do not localise to a filter

Lemma

There are T} -incompatible elements in (Fing)“(R). Indeed, there
are @, b € (Fing)*(R) such that forany j =0,...,k — 1 the
Finy_ ;-block-sequences TV [a] and TW)[b] are Cj_ -incompatible.
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A common strengthening of a theorem by Gowers and a

theorem by Blass

The special case of PP = {(1, min), (1, max)} was proved by Blass
in 1987, the case PP = () and arbitrary finite k by Gowers in 1992.

Theorem

Let k, PP, R be as above. Let a € (Finy)*(R) and let c be a
colouring of TFUg(a) into finitely many colours. Then there is a
bCya, be (Fing)“(R) such that TFU(b) is c-monochromatic.

10/18



Sketch: Proof via Galvin-Glazer technique

Definition
Given k, Puin, Punax and R as above, we define

v(Fing(R)) = {U : U is a min-unbounded ultrafilter over Finy
(Vi S Pmin)(rrfini(lxl) = Ri,min)/\
(Vi e Pmax)(mAini(U) = Rimax)}

endowed with the topology given by the basic open sets
{{U € v(Fing(R)) : A€ U} : AC Fing,
{2(s[{i}]) : s€ A} € R}

The space y(Fing(R)) a compact Hausdorff space.
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For work with semigroups of ultrafilters we temporarily have to
choose PP in a narrower sense. The reason is the claim part of
Def. and Lemma below. We do not know how to handle missing i in

the sequence of R; min's or in the sequence of R; max's in the claim.

Definition

For any k > 1, a reservoir of indices PP of the strict form is one of
the following three types: PP = {(i,min), (7, max) : 1 <1i < k},
PP ={(i,min) : 1 <i <k}, PP={(i,min) : 1 <i <k}
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A lift of the tetris operation

Definition and Lemma

Again we work with strict PP. For 2 < j < k, we write
TIX]={T(a) : a € X} for X CFin;(R | {k—j+1,k}) and
Tla) = (T(an) : n € w) fora € (Fin;)*(R | {k —j + 1,k}).
The lift of the tetris operation

T: y(Finj(R | {k—j+1,...,k})) = y(Finj_1 (R | {k—5+2,...,k}))

is defined via
TU) = {T[X] : X eU}.
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A lift of the partial semigroup operation +

Definition and Lemma
Let k, PP and R be as above, with strict PP. We define + on
(U?Z1 Y(Fin)(R [ {k—j+1,...,k}))? as follows.

+:oy(Fing(R [ {k—i+1,...,k}) x y(Finy(R [ {k -7+ 1,...,k}))
- WFinmax{i,j}(,ﬁ’ f {k - max(i,j) + ]-7 s 7k})

is defined as
Uiy :{X C Fitlpaxgij} (R [ {k — max(i, j) + 1,..., k})

:{s:{t:s+t€X}E7/}€U}.
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Diagonal lower bounds

Lemma
let k, PP, R be as above, not necessarily strict. Here the strict
form of PP is not needed. Any Cy-descending sequence

(€ : m €w) in (Fing)“(R) has a diagonal lower bound
b € (Fing)¥(R)

(\V/TI € “))((B past b’rlr) Lk Emax(supp(b,J)+l>'

such that each b, 1 is an element of {c;, , m : m € w} for some
ly+1 > max(supp(by)) and by is an element of {cy, ,, : M € W}

for some (.
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A k-sequence of very good idempotent ultrafilters

Lemma
(Lemma 2.24, Todorcevic, Ramsey Spaces) Let k, PP, R be as

above, with full PP. For any k > j > 1, and a € (Fing)“(R) there
is an idempotent U; € v(Fin;(R | {k+j — 1,...,k})) such that
forall1 <i<j<k

(1) Ui+t = Uj,
(2) TU=D(U;) = U;.
(3) T0~Y(a) € Up—iy1.
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A useful notion of forcing

Definition

We let k, PP, R be as above, not necessarily strict. In the
Gowers—Matet forcing with R, Mk(ﬁ), the conditions are pairs
(s,¢) such that s € Fing and ¢ € (Fing)*(R) and

supp(s) < supp(co).

The forcing order is: (¢,b) < (s,a) if t = s+ s’ and ' € TFUg(a)
and b Cy, (@ past s')

Definition

For (s,a), (t,b) € My(R) and n € w we let (s,a) <, (t,b) if s =1

and a; = b; for i < n.

Lemma

My (R) has the pure decision property, i.e., for any ¢ € L(€),
(s,a) € M(R) 3(s,b) < (s,a) ((s,b) IF @V (5,b) IF =p).
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Stepping up to finite dimensions

Since the space (Fin;)“(R) is stable, we can step up the
Milliken—Taylor style to higher finite arities:
Theorem

Letn € w\ {0} and a € (Fing)“(R) and let ¢ be a colouring of
[TFUg(a)]™ into finitely many colours. Then there is a b Cy, a,
b € (Fing)“(R) such that [TFU(b)]" is c-monochromatic.
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